Assignment: [tex]\bold{Simplify \ Equation: \ -3x^3\left(-2x^2+4x-3\right)}[/tex]
<><><><><>
Answer: [tex]\boxed{\bold{6x^5-12x^4+9x^3}}[/tex]
<><><><><>
Explanation: [tex]\downarrow\downarrow\downarrow[/tex]
<><><><><>
[ Step One ] Distribute Parenthesis
[tex]\bold{\left(-3x^3\right)\left(-2x^2\right)+\left(-3x^3\right)\cdot \:4x+\left(-3x^3\right)\left(-3\right)}[/tex]
[ Step Two ] Apply Minus & Plus Rules
Note: [tex]\bold{Minus \ And \ Plus \ Rules: \ \left(-a\right)\left(-b\right)=ab,\:\:+\left(-a\right)=-a}[/tex]
[tex]\bold{3\cdot \:2x^3x^2-3\cdot \:4x^3x+3\cdot \:3x^3}[/tex]
[ Step Three ] Simplify [tex]\bold{3\cdot \:2x^3x^2-3\cdot \:4x^3x+3\cdot \:3x^3}[/tex]
[tex]\bold{6x^5-12x^4+9x^3}[/tex]
<><><><><><><>
[tex]\bold{\rightarrow Mordancy \leftarrow}[/tex]