Answer :

Answer:

(a)

          [tex]f(x+ h)=8x+8h+3[/tex]  

(b)

            [tex]f(x+ h)-f(x)=8h[/tex]          

(c)

             [tex]\dfrac{f(x+ h)-f(x)}{h}=8[/tex]

Step-by-step explanation:

We are given a function f(x) as :

              [tex]f(x)=8x+3[/tex]

(a)

           [tex]f(x+ h)[/tex]

We will substitute (x+h) in place of x in the function f(x) as follows:

[tex]f(x+h)=8(x+h)+3\\\\i.e.\\\\f(x+h)=8x+8h+3[/tex]

(b)

       [tex]f(x+ h)-f(x)[/tex]              

Now on subtracting the f(x+h) obtained in part (a) with the function f(x) we have:

[tex]f(x+h)-f(x)=8x+8h+3-(8x+3)\\\\i.e.\\\\f(x+h)-f(x)=8x+8h+3-8x-3\\\\i.e.\\\\f(x+h)-f(x)=8h[/tex]

(c)

           [tex]\dfrac{f(x+ h)-f(x)}{h}[/tex]            

In this part we will divide the numerator expression which is obtained in part (b) by h to get:

           [tex]\dfrac{f(x+ h)-f(x)}{h}=\dfrac{8h}{h}\\\\i.e.\\\\\dfrac{f(x+h)-f(x)}{h}=8[/tex]    

Other Questions