Answer :

tanx+secx-1/tanx-secx+1=secx+tanx is equivalent to 1+sinx/cosx.

Answer:

We have to prove that,

[tex]\frac{\tan x+ \sec x-1}{\tan x- \sec x + 1}=\secx+\tan x[/tex]

L.H.S.

[tex]\frac{\tan x+ \sec x-1}{\tan x- \sec x + 1}[/tex]

[tex]=\frac{\tan x+ \sec x-(\sec^2 x-\tan^2x)}{\tan x- \sec x + 1}[/tex]

( ∵ sec² x - tan² x = 1 )

[tex]=\frac{\tan x+ \sec x-(\sec x-\tan x)(\sec x+\tan x)}{\tan x- \sec x + 1}[/tex]

( ∵ a² - b² = ( a + b ) ( a - b ) )

[tex]=\frac{(\tan x+\sec x)(1-\sec x+\tan x)}{\tan x-\sec x + 1}[/tex]

[tex]=\tan x+\sec x[/tex]

= R.H.S

Hence, proved.....

Other Questions