Answer :
Answer:
Part a)
[tex]V = -1.52 V[/tex]
Part b)
[tex]V = -1.16 V[/tex]
Explanation:
Part a)
Electric potential is a scalar quantity
so here we can say that total potential due to a ring on its center is given as
[tex]V = \frac{kQ}{R}[/tex]
here we know that
[tex]Q = Q_1 - 6Q_1[/tex]
[tex]Q = - 5 Q_1[/tex]
[tex]Q_1 = 2.70 pC[/tex]
now we have
[tex]V = \frac{(9\times 10^9)(-5\times 2.70 \times 10^{-12})}{0.08}[/tex]
[tex]V = -1.52 V[/tex]
Part b)
Potential on the axis of the ring is given as
[tex]V = \frac{kQ}{\sqrt{r^2 + R^2}}[/tex]
[tex]V = \frac{(9\times 10^9)(-5\times 2.70\times 10^{-12})}{\sqrt{0.08^2 + 0.0671^2}}[/tex]
[tex]V = -1.16 V[/tex]