Answer :
Answer:
[tex]\begin{bmatrix}3 &3& 3\\ 2 & 3& 1\\ 2 & -2& 1\end{bmatrix}\begin{bmatrix}x\\ y\\ z\end{bmatrix}=\begin{bmatrix}-1\\ -3\\ -3\end{bmatrix}[/tex]
Step-by-step explanation:
We have given system of equation
3x+3y+z= -1
2x+3y+z= -3
2x-2y+z= -3
We have to write matrix equation in form of AX=B
The matrix equation will be
[tex]\begin{bmatrix}3 &3& 3\\ 2 & 3& 1\\ 2 & -2& 1\end{bmatrix}\begin{bmatrix}x\\ y\\ z\end{bmatrix}=\begin{bmatrix}-1\\ -3\\ -3\end{bmatrix}[/tex]
Here in A matrix first row is coefficient of x second row is coefficient of y and third row is coefficient of z
Matrix B is a constant matrix and matrix X is variable matrix