Answer :

Answer:

[tex]{f}^{ - 1} (x) = \sqrt[3]{ \frac{19}{x} } [/tex]

Step-by-step explanation:

To find the inverse of

[tex]f(x) = \frac{19}{ {x}^{3} } [/tex]

We let

[tex]y = \frac{19}{ {x}^{3} } [/tex]

Interchange x and y

[tex]x = \frac{19}{ {y}^{3} } [/tex]

Solve for y,

[tex]x {y}^{3} = 19[/tex]

[tex] {y}^{3} = \frac{19}{x} [/tex]

Take cube root of both sides

[tex]y = \sqrt[3]{ \frac{19}{x} } [/tex]

Therefore

[tex] {f}^{ - 1} (x) = \sqrt[3]{ \frac{19}{x} } [/tex]

Other Questions