State the domain and end behavior of each rational function. Identify all horizontal and vertical asymptotes on the
graph of each rational function. Then, verify your answer by graphing the function on the graphing calculator.
1. f(x) = −x + 6 / 2x + 3
2. f(x) = 3x − 6 / x
3. f(x) = 3 / x2 − 25
4. f(x) = x2 − 2 / x2 + 2x − 3
5. f(x) = x2 − 5x − 4 / x + 1
6. f(x) = 5x / x2 + 9

Answer :

cjmejiab

Answer:

Rational Functions

Step-by-step explanation:

1)

[tex]f(x) = - \frac{x + 6}{2x + 3}[/tex]

• State the domain

X ∈ R : [tex]x \neq - \frac{3}{2}[/tex]

• End Behaviour

[tex]x \rightarrow \infty , y \rightarrow -\frac{1}{2}[/tex]

• Horizontal and Vertical

[tex]y= -\frac{1}{2} , x=-\frac{3}{2}[/tex]

• Graphic (Annex)

2) [tex]f(x) =  \frac{3x − 6}{x}[/tex]

• State the domain

X ∈ R : [tex] x \neq  0[/tex]

• End Behaviour

[tex]x \rightarrow \infty , y \rightarrow 3 [/tex]

• Horizontal and Vertical

[tex]y= 0 [/tex]

• Graphic (Annex)

3) [tex]f(x) =  \frac{3}{x^2-25}[/tex]

• State the domain

X ∈ R : [tex] x \neq  5.5[/tex]

• End Behaviour

[tex]x \rightarrow +/-\infty , y \rightarrow 0 [/tex]

• Horizontal and Vertical

[tex]y= 0 , x=+/- 5[/tex]

• Graphic (Annex)

4) [tex]f(x) = \frac{ x^2-2}{x^2+2x-3}[/tex]

• State the domain

X ∈ R : [tex] x \neq  (3,1)[/tex]

• End Behaviour

[tex]x \rightarrow +/-\infty , y \rightarrow +/- 1 [/tex]

• Horizontal and Vertical

[tex]y= 1 , x= (-3,1)[/tex]

• Graphic (Annex)

5) [tex]f(x) =  \frac{ x^2 − 5x − 4}{x + 1}[/tex]

• State the domain

X ∈ R : [tex] x \neq  -1 [/tex]

• End Behaviour

[tex]x \rightarrow +/-\infty , y \rightarrow +/ \infty [/tex]

• Horizontal and Vertical

[tex]y=none , x= -1[/tex]

• Graphic (Annex)

6) [tex]f(x) = \frac{ 5x }{x^2 + 9 }[/tex]

• State the domain

X ∈ R

• End Behaviour

[tex]x \rightarrow +/-\infty , y \rightarrow 0 [/tex]

• Horizontal and Vertical

[tex]y= 0 , x= none[/tex]

• Graphic (Annex)

${teks-lihat-gambar} cjmejiab

Other Questions