Answer :
Answer:
Halogen
0.85294
Explanation:
c = Speed of light = [tex]3\times 10^8\ m/s[/tex]
b = Wien's displacement constant = [tex]2.897\times 10^{-3}\ mK[/tex]
T = Temperature
From Wien's law we have
[tex]\lambda_m=\frac{b}{T}\\\Rightarrow \lambda_m=\frac{2.897\times 10^{-3}}{2900}\\\Rightarrow \lambda_m=9.98966\times 10^{-7}\ m[/tex]
Frequency is given by
[tex]\nu=\frac{c}{\lambda_m}\\\Rightarrow \nu=\frac{3\times 10^8}{9.98966\times 10^{-7}}\\\Rightarrow \nu=3.00311\times 10^{14}\ Hz[/tex]
For Halogen
[tex]\lambda_m=\frac{b}{T}\\\Rightarrow \lambda_m=\frac{2.897\times 10^{-3}}{3400}\\\Rightarrow \lambda_m=8.52059\times 10^{-7}\ m[/tex]
Frequency is given by
[tex]\nu=\frac{c}{\lambda_m}\\\Rightarrow \nu=\frac{3\times 10^8}{8.52059\times 10^{-7}}\\\Rightarrow \nu=3.52088\times 10^{14}\ Hz[/tex]
The maximum frequency is produced by Halogen bulbs which is closest to the value of [tex]5.5\times 10^{14}\ Hz[/tex]
Ratio
[tex]\frac{3.00311\times 10^{14}}{3.52088\times 10^{14}}=0.85294[/tex]
The ratio of Incandescent to halogen peak frequency is 0.85294