Calculate the magnitude of the electric field inside the solid at a distance of 9.50 cm from the center of the cavity. Express your answer using two significant figures.

Answer :

nandhini123

Question:

A point charge of -2.14uC  is located in the center of a spherical cavity of radius 6.55cm  inside an insulating spherical charged solid. The charge density in the solid is 7.35×10−4 C/m^3.

a) Calculate the magnitude of the electric field inside the solid at a distance of 9.50cm  from the center of the cavity.  

Express your answer using two significant figures.

Answer:

The magnitude of the electric field inside the solid at a distance of 9.50cm from the center of the cavity [tex]3.65\times 10^5N/C[/tex]

Explanation:

A point charge ,q = [tex]-2.14\times 10^{-6} C[/tex] is located in the center of a spherical cavity of radius , [tex]r =6.55\times 10^{-2}[/tex]  m inside an insulating spherical charged solid.  

The charge density in the solid , d = [tex]7.35 \times 10^{-4}C/m^3.[/tex]

Distance from the center of the cavity,R =[tex]9.5\times 10^{-2 }m[/tex]

Volume of shell of charge= V  =[tex](\frac{4\pi}{3})[ R^3 - r^3 ][/tex]

Charge on the shell ,Q = [tex]V \times d'[/tex]

[tex]Q =(\frac{4\pi}{3})[ R^3 - r^3 ] \times d[/tex]

[tex]Q = 4.1888*\times 10^{-4 }[8.57375 - 2.81011 ]\times 7.35\times 10^{-4}[/tex]

[tex]Q = 4.1888\times 10^{-4} [5.76364 ] \times 7.35 \times 10^{-4}[/tex]

[tex]Q =2.4143 \times 10^{-4} \times 7.35 \times 10^ { -4}[/tex]

[tex]Q =1.7745 \times 10^{-6 }C[/tex]

Electric field at [tex]9.5\times 10^{-2}[/tex]m due to shell[tex]E1 = \frac{k Q}{R^2}[/tex]

E1 =  [tex]\frac{ 9 \times 10^9\times 1.7745\times 10^{-6 }}{ 90.25\times 10^{-4}}[/tex]

[tex]E1 =1.769\times 10^6 N/C[/tex]

Electric field at  [tex]9.5\times 10^{-2}[/tex] due to 'q' at center [tex]E2 = \frac{kq}{R^2}[/tex]

E2 =[tex]\frac{ - 9 \times 10^9\times 2.14\times 10^{-6 }}{ 90.25\times 10^{-4}}[/tex]

[tex]E2 =2.134\times 10^6 N/C[/tex]

The magnitude of the electric field inside the solid at a distance of 9.50cm from the center of the cavity

= E2- E1

[tex]=[ 2.134 - 1.769 ]\times 10^6[/tex]

[tex]= 3.65\times 10^5 N/C[/tex]

Other Questions