Answered

An electron is released from rest at a distance of 0.570 m from a large insulating sheet of charge that has uniform surface charge density 4.60×10−12 C/m2 . Part A How much work is done on the electron by the electric field of the sheet as the electron moves from its initial position to a point 6.00×10−2 m from the sheet?

Answer :

Explanation:

Formula to calculate the electric field of the sheet is as follows.

          E = [tex]\frac{\sigma}{2 \epsilon_{o}}[/tex]

And, expression for magnitude of force exerted on the electron is as follows.

            F = Eq

So, work done by the force on electron is as follows.

           W = Fs

where,     s = distance of electron from its initial position

                  = (0.570 - 0.06) m

                  = 0.51 m

First, we will calculate the electric field as follows.

              E = [tex]\frac{\sigma}{2 \epsilon_{o}}[/tex]

                 = [tex]\frac{4.60 \times 10^{-12}C/m^{2}}{2 \times 8.854 \times 10^{-12}C^{2}/N m^{2}}[/tex]

                 = 0.259 N/C

Now, force will be calculated as follows.

                 F = Eq

                    = [tex]0.259 N/C \times 1.6 \times 10^{-19} C[/tex]

                    = [tex]0.415 \times 10^{-19} N[/tex]

Now, work done will be as follows.

                    W = Fs

                        = [tex]0.415 \times 10^{-19} N \times 0.51 m[/tex]

                        = [tex]2.12 \times 10^{-20} J[/tex]

Thus, we can conclude that work done on the electron by the electric field of the sheet is [tex]2.12 \times 10^{-20} J[/tex].

Answer:

The work done is [tex]2.12\times10^{-20}\ J[/tex] and 0.1325 eV.

Explanation:

Given that,

Distance = 0.570 m

Surface charge density [tex]\sigma=4.60\times10^{-12}\ C/m^{2}[/tex]

Using formula of electric field

[tex]E = \dfrac{\sigma}{2\epsilon_{0}}[/tex]

Using formula of electrostatic force ,

[tex]F = eE[/tex]

[tex]F=e\times(\dfrac{\sigma}{2\epsilon_{0}})[/tex]

(A). We need to calculate the work done

Using formula of work done

[tex]W=Fd[/tex]

[tex]W=e\times(\dfrac{\sigma}{2\epsilon_{0}})d[/tex]

Put the value into the formula

[tex]W=1.6\times10^{-19}\times(\dfrac{4.60\times10^{-12}}{2\times8.85\times10^{-12}})\times(0.570-6.00\times10^{-2})[/tex]

[tex]W=2.12\times10^{-20}\ J[/tex]

[tex]W=\dfrac{2.12\times10^{-20}}{1.6\times10^{-19}}\ ev[/tex]

[tex]W=0.1325\ eV[/tex]

Hence, The work done is [tex]2.12\times10^{-20}\ J[/tex] and 0.1325 eV.

Other Questions