Answer :
Answer:
[tex]T(2)_{x} = 1 + \frac{1}{3} x + \frac{1}{18} x^{2}[/tex]
Step-by-step explanation:
Thinking process:
Let the function be: f(x)−T2(x)| on the interval [-1,1].
Then, if [tex]f(x) =e^{\frac{x}{3} }[/tex]
Then [tex]f(x)^{'1} = \frac{1}{3}e^{\frac{1}{3} }[/tex]
[tex]f^{11}(x) = \frac{1}{9}e^{\frac{1}{3} } , then f^{11}/2 = 2![/tex]
and so on..
Then the function becomes:
[tex]T(2) x = 1 + \frac{1}{3}x + \frac{1}{18}x^{2}[/tex]
The resultant function of the Quadratic Approximation Error Bound is mathematically given as
[tex]T(2) x = 1 + \frac{1}{3}x + \frac{1}{18}x^{2}[/tex] , The correct option is True(A).
Does the Quadratic Approximation Error Bound indicate that |f(x)−T2(x)|≤ 0.004307 for all x in I?
Question Parameters:
the Quadratic Approximation Error Bound to bound the error |f(x)−T2(x)| on the interval [-1,1]
Generally, the equation for the Function is mathematically given as
f(x)−T2(x)
Therefore
for [tex]f(x) =e^{\frac{x}{3} }[/tex]
The function gives
[tex]f(x)^{'1} = \frac{1}{3}e^{\frac{1}{3} }[/tex]
[tex]f^{11}/2 = 2*1[/tex]
f^{11}/2 = 2
In conclusion, The resultant function becomes
[tex]T(2) x = 1 + \frac{1}{3}x + \frac{1}{18}x^{2}[/tex]
Read more about Arithmetic
https://brainly.com/question/22568180