Answer :
Answer:
[tex]I(t)=\frac{1}{3}(1-e^{-30t})[/tex]
Step-by-step explanation:
We are given that
[tex]\frac{dI}{dt}+\frac{R}{L}I=\frac{V(t)}{L}[/tex]
R=150 ohm
L=5 H
V(t)=10 V
[tex]P=\frac{R}{L}=\frac{150}{5}=30[/tex]
[tex]I.F=e^{\int Pdt}=e^{\int 30 dt}=e^{30 t}[/tex]
[tex]I(t)\times I.F=\int e^{30 t}\times 10 dt+C[/tex]
[tex]I(t)\times e^{30 t}=\frac{10}{30}e^{30 t}+C[/tex]
[tex]I(t)=\frac{1}{3}+Ce^{-30 t}[/tex]
I(0)=0
Substitute t=0
[tex]0=\frac{1}{3}+C[/tex]
[tex]C=-\frac{1}{3}[/tex]
Substitute the values
[tex]I(t)=\frac{1}{3}-\frac{1}{3}e^{-30 t}[/tex]
[tex]I(t)=\frac{1}{3}(1-e^{-30t})[/tex]