Answer :
After solving, we get the final expression as: [tex]\frac{-n^{2}-32n {} }{(n+4)(n-3)}[/tex]
Step-by-step explanation:
Given:
[tex]\frac{4n}{n+4} - \frac{5n}{n-3}[/tex]
= [tex]\frac{4n}{n+4} - \frac{5n}{n-3}[/tex]
Now taking L.C.M,
= [tex]\frac{4n(n-3)-5n(n+4)}{(n+4)(n-3)}[/tex]
Simplify the equation in numerator,
= [tex]\frac{4n^{2}-12n-5n^2 {-20n} }{(n+4)(n-3)}[/tex]
= = [tex]\frac{-n^{2}-32n {} }{(n+4)(n-3)}[/tex]
Thus, this is the required solution: [tex]\frac{-n^{2}-32n {} }{(n+4)(n-3)}[/tex]