In March 2006, two small satellites were discovered orbiting Pluto, one at a distance of 48,000 km and the other at 64,000 km. Pluto already was known to have a large satellite, Charon, orbiting at 19,600 km with an orbital period of 6.39 days.

Required:
Assuming that the satellites do not affect each other, find the orbital periods T1 and T2 of the two small satellites without using the mass of Pluto.

Answer :

Answer:

Time period for first satellites 24.46 days and for second satellites 37.67 days

Explanation:

Given :

Distance of first satellites [tex]r_{sat1} = 48000 \times 10^{3}[/tex] m

Distance of second satellites [tex]r _{sat2} = 64000 \times 10^{3}[/tex] m

Distance of charon [tex]r_{c} = 19600 \times 10^{3}[/tex] m

Time period of charon [tex]T_{c} = 6.39[/tex] days

From the kepler's third law,

Square of the time period is proportional to the cube of the semi major axis.

   [tex]T^{2} = r^{3}[/tex]

   [tex]\frac{T}{r^{\frac{3}{2} } } = constant[/tex]

For first satellites,

  [tex]\frac{T_{c} }{r_{c} ^{\frac{3}{2} } } = \frac{T_{sat1} }{r_{sat1} ^{\frac{3}{2} } }[/tex]

[tex]{T_{sat1} } = 6.39 \times \frac{(48000 \times 10^{3} )^{\frac{3}{2} } }{(19600\times 10^{3} )^{\frac{3}{2} }}[/tex]

[tex]T_{sat1} = 24.46[/tex] days

For second satellites,

   [tex]\frac{T_{c} }{r_{c} ^{\frac{3}{2} } } = \frac{T_{sat2} }{r_{sat2} ^{\frac{3}{2} } }[/tex]

[tex]{T_{sat2} } = 6.39 \times \frac{(64000 \times 10^{3} )^{\frac{3}{2} } }{(19600\times 10^{3} )^{\frac{3}{2} }}[/tex]

[tex]T_{sat2} = 37.67[/tex] days

Therefore, time period for first satellites = 24.46 days and for second satellites 37.67 days

Other Questions