Answer :
Answer:
The total resistance of the wire is = [tex]1.917\times10^{-3}[/tex]
Explanation:
Since the wires will both be in contact with the voltage source at the same time and the current flows along in their length-wise direction, the two wires will be considered to be in parallel.
Hence, for resistances in parallel, the total resistance, [tex]R_{Total}[/tex]
[tex]\frac{1}{R_{Total}} =\frac{1}{R_{cu} }+\frac{1}{R_{al}}[/tex]
Parameters given:
Length of wire = 1 m
Cross sectional area of copper [tex]A_{cu}= \pi r^{2}= \pi \times (1\times 10^{-3} )^{2} =3.142\times10^{-6} m^{2}[/tex]
Cross sectional area of aluminium wire
[tex]A_{al}= \pi( R^{2}-r^{2})\\\\ = \pi \times [ (2\times 10^{-3} )^{2}-(1\times 10^{-3} )^{2}] =9.42\times10^{-6} m^{2}\\[/tex]
Resistivity of copper [tex]\rho _{cu}=1.7\times 10^{-8} \Omega .m[/tex]
Resistivity of Aluminium [tex]\rho _{al}=2.8\times 10^{-8} \Omega .m[/tex]
Resistance of copper [tex]R_{cu}= \frac{\rho_{cu} \times l}{A_{cu} } =\frac{1.7\times 10^{-8} \times 1}{3.142\times10^{-6} } =5.41\times 10^{-3}\Omega[/tex]
Resistance of aluminium [tex]R_{al}= \frac{\rho_{al} \times l}{A_{al} } =\frac{2.8\times 10^{-8} \times 1}{9.42\times10^{-6} } =2.97\times 10^{-3}\Omega[/tex]
The total resistance of the wire can be obtained as follows;
[tex]\frac{1}{R_{Total}} =\frac{1}{5.41\times10^{-3} }+\frac{1}{2.97\times10^{-3}}=521.52\frac{1}{\Omega}[/tex]
[tex]R_{Total}= 1.917\times 10^{-3}\Omega[/tex]
∴ The total resistance of the wire = [tex]1.917\times 10^{-3}\Omega[/tex]
Answer:
Explanation:
Given:
Length, L = 1 m
radius, rc = 1.0 mm
Area of inner copper, Ac = pi × (0.001)^2
= 3.142 × 10^-6 m^2
Thickness, t = 1.0 mm
Total radius of the wire, rt = 2.0 mm
Area of outer aluminum sheathe, Aa = area of total wire, At - area of copper core, Ac
Area of total wire = pi × (0.002)^2
= 1.26 × 10^-5 m^2
Aa = 1.26 × 10^-5 - 3.142 × 10^-6
= 9.42 × 10^-6 m^2
Resistivity of copper, Dc = 1.7×10−8 Ω·m
Resistivity of aluminum, Da = 2.8×10−8 Ω·m
D = (R × A)/L
Rc = (Dc × L)/Ac
= (1.7×10−8 × 1)/3.142 × 10^-6
= 5.41 × 10^-3 Ω
Ra = (2.8×10−8 × 1)/9.42 × 10^-6
= 2.97 × 10^-3 Ω
Since both wires are connected at the same time to the voltage supply, therefore,
1/Rt = 1/Ra + 1/Rc
= 1/2.97 × 10^-3 + 1/5.41 × 10^-3
= 521.54
Rt = 1.92 × 10^-3 Ω