A bar of length L = 8 ft and midpoint D is falling so that, when θ = 27°, ∣∣v→D∣∣=18.5 ft/s , and the vertical acceleration of point D is 23 ft/s2 downward. At this instant, compute the angular acceleration of the bar and the acceleration of point B.

Answer :

mavila18

Answer:

alpha=53.56rad/s

a=5784rad/s^2

Explanation:

First of all, we have to compute the time in which point D has a velocity of v=23ft/s (v0=0ft/s)

[tex]v=v_0+at\\\\t=\frac{v}{a}=\frac{(23\frac{ft}{s})}{32.17\frac{ft}{s^2}}=0.71s[/tex]

Now, we can calculate the angular acceleration  (w0=0rad/s)

[tex]\theta=\omega_0t +\frac{1}{2}\alpha t^2\\\alpha=\frac{2\theta}{t^2}[/tex]

[tex]\alpha=\frac{27}{(0.71s)^2}=53.56\frac{rad}{s^2}[/tex]

with this value we can compute the angular velocity

[tex]\omega=\omega_0+\alpha t\\\omega = (53.56\frac{rad}{s^2})(0.71s)=38.02\frac{rad}{s}[/tex]

and the tangential velocity of point B, and then the acceleration of point B:

[tex]v_t=\omega r=(38.02\frac{rad}{s})(4)=152.11\frac{ft}{s}\\a_t=\frac{v_t^2}{r}=\frac{(152.11\frac{ft}{s})^2}{4ft}=5784\frac{rad}{s^2}[/tex]

hope this helps!!

Answer:

a) the angular acceleration of the bar AB is [tex]\alpha_{AB} = - 29.31 \ k' \ rad/s^2[/tex]

b) the acceleration [tex]a_B[/tex] of point B = [tex]-218.6 \ i \ ft/s^2[/tex]

Explanation:

The sketched diagram below shows an illustration of what the question comprises of:

Now, from the diagram ; we can deduce the following relations;

[tex]v_{B/A} = L (sin \theta \ i' - cos \theta \ j')[/tex]

[tex]v_{D/A} = \frac{L}{2} (sin \theta \ i' - cos \theta \ j')[/tex]

Taking point H as the instantaneous center of rotation of line HD. The distance between H and D is represented as:

[tex]d_{HD} = \frac{L}{2}[/tex]

The angular velocity of the bar AB from the diagram can be determined by using the relation:

[tex]\omega__{AB}} = \frac{V_D}{d_{HD}}[/tex]

where:

[tex]d_{HD} = \frac{L}{2}[/tex]

and

[tex]V_D[/tex] = velocity of point D = 18.5 ft/s

L = length of the bar = 8 ft

Then;

[tex]\omega__{AB}} = \frac{18.5}{4}[/tex]

[tex]\omega__{AB}} = 4.625 \ rad/s[/tex]

Using vector approach to acceleration analysis;

Acceleration about point B can be expressed as;

[tex]a_B = ( \alpha_{AB} Lcos \theta - \omega^2 _{AB}L sin \theta ) i + (a_A + \alpha_{AB} Lsin \theta + \omega ^2 _{AB} Lcos \theta )j[/tex] ---equation(1)

The y - component of [tex]a_B[/tex] ⇒ [tex]a__{By}}[/tex] = [tex]a_A + \alpha_{AB} Lsin \theta + \omega ^2 _{AB} Lcos \theta[/tex]

where; [tex]a__{By}}[/tex] = 0

Then

0 =  [tex]a_A + \alpha_{AB} Lsin \theta + \omega ^2 _{AB} Lcos \theta[/tex]

Making [tex]a_A[/tex] the subject of the formula; we have:

[tex]a_A = - ( \alpha_{AB} Lsin \theta + \omega ^2 _{AB} Lcos \theta)[/tex]         -------    equation (2)

Acceleration about point D is expressed as follows:

[tex]a_D = ( \alpha_{AB} Lcos \theta - \omega^2 _{AB}L sin \theta ) i' + (a_A + \alpha_{AB} \frac{L}{2}sin \theta + \omega ^2 _{AB} \frac{L}{2}cos \theta )j'[/tex]

The y - component of [tex]a_D[/tex] ⇒ [tex]a__{Dy}} = a_A + \alpha_{AB} \frac{L}{2}sin \theta + \omega ^2 _{AB} \frac{L}{2}cos \theta[/tex]

Replacing - 23 ft/s² for [tex]a_y[/tex]; we have:

[tex]- 23 ft/s^2 \ = a_A + \alpha_{AB} \frac{L}{2}sin \theta + \omega ^2 _{AB} \frac{L}{2}cos \theta[/tex]

Also; replacing equation (2) for [tex]a_A[/tex] in the above expression; we have

[tex]- 23 ft/s^2 \ = - ( \alpha_{AB} Lsin \theta + \omega ^2 _{AB} Lcos \theta) + \alpha_{AB} \frac{L}{2}sin \theta + \omega ^2 _{AB} \frac{L}{2}cos \theta[/tex]

[tex]- 23 ft/s^2 \ = - \alpha_{AB} \frac{L}{2}sin \theta - \omega ^2 _{AB} \frac{L}{2}cos \theta[/tex]

Making [tex]\alpha _{AB}[/tex] the subject of the formula ; we have:

[tex]\alpha_{AB} = \frac{46 \ ft/s^2}{Lsin\theta } - \omega^2 _{AB} cot \theta[/tex]

Replacing 8 ft for L;   27° for θ; 4.625 rad/s for [tex]\omega __{AB}[/tex]

Then;

[tex]\alpha_{AB} = \frac{46 \ ft/s^2}{8 sin27^0 } - (4.625^2)( cot 27)[/tex]

[tex]\alpha_{AB} = 12.67 - 41.98[/tex]

[tex]\alpha_{AB} = - 29.31 rad/s^2[/tex]

[tex]\alpha_{AB} = - 29.31 \ k' \ rad/s^2[/tex]

Thus, the angular acceleration of the bar AB is [tex]\alpha_{AB} = - 29.31 \ k' \ rad/s^2[/tex]

b)

To calculate  the acceleration of point B using equation (1); we have:

[tex]a_B = ( \alpha_{AB} Lcos \theta - \omega^2 _{AB}L sin \theta ) i + (a_A + \alpha_{AB} Lsin \theta + \omega ^2 _{AB} Lcos \theta )j[/tex]

Replacing

[tex]\alpha_{AB} = - 29.31 rad/s^2[/tex]

L = 8 ft

θ = 27°

[tex]\omega __{AB}[/tex] =  4.625 rad/s

[tex]a_A + \alpha_{AB} Lsin \theta + \omega ^2 _{AB} Lcos \theta[/tex] = y = 0

Then;

[tex]a_B = [-29.31(8)cos 27^0- (4.625^2)(8sin27^0)] i +0j[/tex]

[tex]a_B = -218.6 \ i \ ft/s^2[/tex]

Thus, the acceleration [tex]a_B[/tex] of point B = [tex]-218.6 \ i \ ft/s^2[/tex]

${teks-lihat-gambar} ajeigbeibraheem

Other Questions