Answer :
sin² x + sin x = 0
sin x ( sin x + 1 ) = 0
sin x = 0 or sin x + 1 = 0
x 1 = kπ, sin x = -1
k ∈ Z x 2 = 3π/2 + 2 kπ, k ∈ Z
sin x ( sin x + 1 ) = 0
sin x = 0 or sin x + 1 = 0
x 1 = kπ, sin x = -1
k ∈ Z x 2 = 3π/2 + 2 kπ, k ∈ Z
Answer:
sinx =0 + 2πn or
sinx =-1 + 2πn
Step-by-step explanation:
sin2x + sin x = 0
sinx (sinx + 1) = 0
sinx =0, then x=π+2π= π (1+2n) and x=2π + 2πn = 2π (1+n)
or
sinx +1=0,
x =-3π/2 + 2πn