Answer :

ujalakhan18

Answer:

[tex]x = 14\\y = 20 \\[/tex]

Step-by-step explanation:

Finding x:

8x + 3x + 26 = 180 (Angle on a straight line add up to 180°)

11x = 180-26

11x = 154

Dividing both sides by 11

x = 14

Finding y:

3x + 5y + 38 = 180 (Angle on a straight line add up to 180°)

3(14) + 5y + 38 = 180

42 + 38 + 5y = 180

80 + 5y = 180

5y = 180-80

5y = 100

Dividing both sides by 5

y = 20

Hrishii

Answer:

x = 14, y = 20

Step-by-step explanation:

[tex](8x + 26) \degree + 3x \degree = 180 \degree..(straight \: line \: \angle s) \\ (11x + 26) \degree = 180 \degree \\ 11x + 26 = 180 \\ 11x = 180 - 26 \\ 11x = 154 \\ \\ x = \frac{154}{11} \\ \\ \huge \red { \boxed{x = 14}} \\ \\ (5y + 38) \degree = (8x + 26) \degree..(vertical \: \angle s) \\ 5y + 38 = 8 \times 14 + 26 \\ 5y + 38 = 112 + 26 \\ 5y + 38 = 138 \\ 5y = 138 - 38 \\ 5y = 100 \\ \\ y = \frac{100}{5} \\ \\ \huge \purple{ \boxed{ y = 20}}[/tex]

Other Questions