algebra applications: find the value of x and y

Answer:
[tex]x = 14\\y = 20 \\[/tex]
Step-by-step explanation:
Finding x:
8x + 3x + 26 = 180 (Angle on a straight line add up to 180°)
11x = 180-26
11x = 154
Dividing both sides by 11
x = 14
Finding y:
3x + 5y + 38 = 180 (Angle on a straight line add up to 180°)
3(14) + 5y + 38 = 180
42 + 38 + 5y = 180
80 + 5y = 180
5y = 180-80
5y = 100
Dividing both sides by 5
y = 20
Answer:
x = 14, y = 20
Step-by-step explanation:
[tex](8x + 26) \degree + 3x \degree = 180 \degree..(straight \: line \: \angle s) \\ (11x + 26) \degree = 180 \degree \\ 11x + 26 = 180 \\ 11x = 180 - 26 \\ 11x = 154 \\ \\ x = \frac{154}{11} \\ \\ \huge \red { \boxed{x = 14}} \\ \\ (5y + 38) \degree = (8x + 26) \degree..(vertical \: \angle s) \\ 5y + 38 = 8 \times 14 + 26 \\ 5y + 38 = 112 + 26 \\ 5y + 38 = 138 \\ 5y = 138 - 38 \\ 5y = 100 \\ \\ y = \frac{100}{5} \\ \\ \huge \purple{ \boxed{ y = 20}}[/tex]