Answer :
a) The domain remains the same.
Since, in y = - 2 f(x) , the y is whats being multiplied and therefore changed, not the x or domain.
Therefore D[-6,10]
The range is what changes by a factor of -2.
If the original range was [-8,12], then the new one is
[(-8 x -2),(12 x -2)] = [16 , -24].
However, you must flip the numbers to make the interval true, giving you R [-24,16]
Since, in y = - 2 f(x) , the y is whats being multiplied and therefore changed, not the x or domain.
Therefore D[-6,10]
The range is what changes by a factor of -2.
If the original range was [-8,12], then the new one is
[(-8 x -2),(12 x -2)] = [16 , -24].
However, you must flip the numbers to make the interval true, giving you R [-24,16]
Answer:
a.Domain ,D=[-6,10]
Range ,R=[-24,16]
b.Domain,D=[-6,10]
Range=[8,12]
c.Domain=[-4,12]
Range=[-11,9]
Step-by-step explanation:
We are given that [tex]y=f(x)[/tex] be a function with domain D=[-6,10] and range R=[-8,12].
Assume f(-6)=12, f(10)=-8
a.[tex]y=-2f(x)[/tex]
We have to find the domain D and range R of the function.
Substitute f(-6)=12 then we get
[tex]y=-2(120=-24[/tex]
Substitute f(10)=-8[/tex]
[tex]y=-2(-8)=16[/tex]
Domain remain same like domain of given function.
Domain ,D=[-6,10]
Range ,R=[-24,16]
b.[tex]y=\mid f(x)\mid[/tex]
We have to find the value of domain and range.
[tex]y=\mid f(-6)\mid=\mid 12\mid=12[/tex]
[tex]y=\mid f(10)\mid=\mid -8\mid=8[/tex]
Domain,D=[-6,10]
Range=[8,12]
c.[tex]y=f(x+2)-3[/tex]
Substitute x=-6 then
[tex]y=f(-6+2)-3=f(-4)-3[/tex]
Substitute x=10
Then, we get [tex]y=f(10+2)-3=f(12)-3[/tex]
Domain=[-4,12]
f(-6)=12 then , we get
[tex]y=12-3=9[/tex]
Substitute x=10
then, we get[tex]y=-8-3=-11[/tex]
Range of f(x)=Range f(x+2)
Range=[-11,9]