Answer :

Answer:

g(1)=7 1/5

Step-by-step explanation:

vertex (-5,0) , y intercept(0,5)

the quadratic equation is in the form of a parabola: y=ax²+bx+c

y=a(x-h)²+k    find a and b and c

5=a(0-(-5))²+0

5=a(5)²+0

5=25a  ⇒ a=5/25 ⇒ a=1/5

-b/2a=h

-b=2ah ⇒=-b=2(1/5)(-5) ⇒ -b=-2⇒ b=2

y=c=5 ( when x=0, y intercept)

y=1/5x² + 2x + 5

g(1)=1/5(1)²+2(1)+5

g(1)=1/5+2+5

g(1)=7 1/5

MrRoyal

A quadratic function has a degree of 2, and it is represented as: [tex]y = ax^2 + bx + c[/tex]. The value of g(1) is -7.2

Given that:

[tex](h,k) = (-5,0)[/tex] --- the vertex

[tex](x,y) = (0,-5)[/tex] --- the y-intercept

The quadratic function in vertex form is:

[tex]y = a(x - h)^2 + k[/tex]

Where:

[tex](h,k) = (-5,0)[/tex] --- the vertex

So, we have:

[tex]y = a(x - -5)^2 + 0[/tex]

[tex]y = a(x +5)^2[/tex]

Substitute [tex](x,y) = (0,-5)[/tex] to calculate the value of a

[tex]-5 = a(0 +5)^2[/tex]

[tex]-5 = a(5)^2[/tex]

[tex]-5 = a \times 25[/tex]

Divide both sides by 25

[tex]a = -\frac 15[/tex]

So, the quadratic equation is:

[tex]y = a(x +5)^2[/tex]

[tex]y = -\frac 15(x +5)^2[/tex]

Rewrite as a function

[tex]g(x) = -\frac 15(x +5)^2\\[/tex]

To calculate g(1), we simply substitute 1 for x

[tex]g(1) = -\frac 15(1 +5)^2[/tex]

[tex]g(1) = -\frac 15(6)^2[/tex]

[tex]g(1) = -\frac 15 \times 36[/tex]

[tex]g(1) = -7.2[/tex]

Hence:

The value of g(1) is -7.2

Read more about quadratic functions at:

https://brainly.com/question/4119784

Other Questions