Answer :

Ashraf82

Answer:

[tex]\frac{(a^{2})^{3}.a^{-3}}{a^{10}}=\frac{a^{6}.a^{-3}}{a^{10}}=\frac{a^{3}}{a^{10}}=a^{-7}=\frac{1}{a^{7}}[/tex]

Step-by-step explanation:

Let us revise the properties of exponents

  • [tex]a^{m}.a^{n}=a^{m+n}[/tex]
  • [tex]\frac{a^{m}}{a^{n}}=a^{m-n}[/tex]
  • [tex](a^{m})^{n}=a^{m.n}[/tex]
  • [tex]a^{-m}=\frac{1}{a^{m} }[/tex]

Let us use these properties to solve the question

→ By using the 3rd property above

∵ [tex](a^{2})^{3}=a^{2.3}=a^{6}[/tex]

∴ [tex]\frac{(a^{2})^{3}.a^{-3}}{a^{10}}=\frac{a^{6}.a^{-3}}{a^{10} }[/tex]

→ By using the 1st property above

∵ [tex]a^{6}.a^{-3}=a^{6+-3}=a^{6-3}=a^{3}[/tex]

∴  [tex]\frac{(a^{2})^{3}.a^{-3}}{a^{10}}=\frac{a^{6}.a^{-3}}{a^{10}}=\frac{a^{3}}{a^{10}}[/tex]

→ By using the 2nd property above

∵ [tex]\frac{a^{3}}{a^{10}}=a^{3-10}=a^{-7}[/tex]

∴  [tex]\frac{(a^{2})^{3}.a^{-3}}{a^{10}}=\frac{a^{6}.a^{-3}}{a^{10}}=\frac{a^{3}}{a^{10}}=a^{-7}[/tex]

→ By using the 4th property above

∵ [tex]a^{-7}=\frac{1}{a^{7}}[/tex]

∴  [tex]\frac{(a^{2})^{3}.a^{-3}}{a^{10}}=\frac{a^{6}.a^{-3}}{a^{10}}=\frac{a^{3}}{a^{10}}=a^{-7}=\frac{1}{a^{7}}[/tex]

Other Questions