Answer :
Answer:
20.95 inches
Step-by-step explanation:
The complete revolution of the minute hand forms a circle in 60 minutes.
circumference of a circle = 2[tex]\pi[/tex] radius
i.e C = 2[tex]\pi[/tex]r
But from the question, r = length of the minute hand = 10 inches
⇒ C = 2[tex]\pi[/tex] x 10
= 20[tex]\pi[/tex]
C = 20[tex]\pi[/tex] inches
Also, 20 minutes = [tex]\frac{20 minutes}{60 minutes}[/tex] = [tex]\frac{1}{3}[/tex] of the circumference.
So that,
the distance of the tip of the minute hand = [tex]\frac{1}{3}[/tex] x C
= [tex]\frac{1}{3}[/tex] x 20[tex]\pi[/tex]
= [tex]\frac{1}{3}[/tex] x 20 x [tex]\frac{22}{7}[/tex]
= 20.9524
= 20.95 inches
Thus, the distance of the tip of the minute hand is 20.95 inches