Answer :

absor201

Answer:

The equation of the line will be:

[tex]y=\frac{5}{3}x-1[/tex]

Step-by-step explanation:

Given the points

  • (3, 4)
  • (12, 9)

Finding the slope between (3, 4) and (12, 9)

[tex]\left(x_1,\:y_1\right)=\left(3,\:4\right),\:\left(x_2,\:y_2\right)=\left(12,\:19\right)[/tex]

[tex]\mathrm{Slope}=\frac{y_2-y_1}{x_2-x_1}[/tex]

[tex]m=\frac{19-4}{12-3}[/tex]

[tex]m=\frac{5}{3}[/tex]

The equation of the line can be obtained using the point-slope form of the equation of the line

[tex]y-y_1=m\left(x-x_1\right)[/tex]

substituting the values m = 5/9 and the point (3, 4)

[tex]y-4=\frac{5}{3}\left(x-3\right)[/tex]

[tex]y-4+4=\frac{5}{3}\left(x-3\right)+4[/tex]

[tex]y=\frac{5}{3}x-1[/tex]

Therefore, the equation of the line will be:

[tex]y=\frac{5}{3}x-1[/tex]

Other Questions