Answer :
Answer:
Following are the solution to the given point:
Step-by-step explanation:
In point a:
[tex]\to 2ty'=8y\to \frac{1}{y} dy = 4 \frac{1}{t} dt\\\\\to \int \frac{1}{y} dy = 4 \int \frac{1}{t} dt \\\\\to \log y = 4 \log t + \log C\\\\\to \log y = \log ct^4\\\\\to y=ct^4 \\\\\to y(-2)=16 \\\\\to 16= c(-2)^4\\\\\to 16= 16c\\\\\to c= \frac{16}{16}\\\\\to c=1\\\\\to r=4[/tex]
In point b:
[tex]\to 2ty' = 8y \\\\\to y'- \frac{4}{t} y=0 \\\\here \ p(t) = \frac{1}{t}[/tex] it's a discontinuous point at t=0, and the largest internal containing -2 since [tex]y=(-2) = 16 \ is\ (-\infty, 0)[/tex]
In point c:
[tex](-\infty,0 ) \cup (0, \infty)[/tex]