Answered

Consider the arrangement shown. Table top is rough and coefficient of friction between table top and block 2m is μ. Pulley and string are ideal.

Minimum value of μ at table top to keep system at equilibrium, is

Consider the arrangement shown. Table top is rough and coefficient of friction between table top and block 2m is μ. Pulley and string are ideal.Minimum value of class=

Answer :

[tex]\blue{\bold{\underline{\underline{Answer:}}}}[/tex]

  • [tex]\green{\tt{\mu=0.5}}[/tex]

[tex]\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}\\[/tex]

[tex]\green{\underline{\bold{Given :}}} \\\\ \tt: \implies Mass \: of \: blocks = m \: and \: 2 m \\ \\ \red{\underline{\bold{To \: Find :}}} \\ \\ \tt: \implies Minimum \: value \: of \: \mu \: so \: that \: system \: will \: be \: in \: equilibrium =? [/tex]

[tex]\blue{\underline{\bold{Calculation :}}}\\[/tex]

[tex] \bold{For \: block \: of \: mass \: m}\\ \\ \tt: \implies mg - T= ma \\ \\ \tt \because \: a = 0 { \: m/s}^{2} \\ \\ \tt: \implies T = mg - - - - - (1) \\ \\ \bold{For \: block \: of \: mass \: 2m} \\\\ \tt: \implies T = fr \:\:\:\:\:\:(for\:equilibrium) \\ \\ \tt: \implies T= \mu N \\ \\ \tt: \implies t = \mu \: 2mg \\ \\ \tt: \implies mg = \mu \: 2mg \\ \\ \tt: \implies \mu = \frac{mg}{2mg} \\ \\ \green{\tt: \implies \mu = 0.5} \\ \\ \green{ \tt \therefore Minimum \: coefficient \: of \: friction \: is \: 0.5 }[/tex]

Other Questions