Answer :
Compute the magnitude of the centripetal acceleration a :
a = (22 m/s)² / (50 m) = 9.68 m/s²
Then the magnitude of the centripetal force is
F = (1200 kg) (9.68 m/s²) = 11,616 N ≈ 12,000 N
The truck needs 11,616 N of centripetal force to bend around a radius 50 m.
From the centripetal acceleration,
[tex]a = \dfrac{v^2}{r}[/tex]
Where,
[tex]a[/tex]- Centripetal acceleration
[tex]v[/tex]- velocity = 22 m/s
[tex]r[/tex]- radius = 50 m
Put the values,
[tex]a =\dfrac { (22 \rm \ m/s)^2}{(50\rm \ m)}\\\\a = 9.68\rm \ m/s^2[/tex]
So, the centripetal force is
[tex]F = ma[/tex]
Where, m is the mass = 1200 kg
So,
[tex]F= 1200\rm \ kg\times 9.68\rm \ m/s^2 \\\\F = 11,616\rm \ N[/tex]
Therefore, the truck needs 11,616 N of centripetal force to bend around a radius 50 m.
To know more about centripetal force,
https://brainly.com/question/10596517