Answer :

absor201

Answer:

[tex]\sqrt{27x^2y^2}=3xy\:\sqrt{3}[/tex]

Hence, option C is correct.

Step-by-step explanation:

Given the expression

[tex]\sqrt{27x^2y^2}[/tex]

simplifying the expression

[tex]\sqrt{27x^2y^2}=\sqrt{27}\sqrt{x^2}\sqrt{y^2}[/tex]

Apply radical rule: [tex]\sqrt{a^2}=a,\:\quad \mathrm{\:assuming\:}a\ge 0[/tex]

               [tex]=\sqrt{27}x\sqrt{y^2}[/tex]

Apply radical rule: [tex]\sqrt{a^2}=a,\:\quad \mathrm{\:assuming\:}a\ge 0[/tex]

                [tex]=\sqrt{27}xy[/tex]

                [tex]=xy\sqrt{3^3}[/tex]

                 [tex]=xy\sqrt{3^2\cdot \:\:3}[/tex]

Apply radical rule: [tex]\sqrt{a^2}=a,\:\quad \mathrm{\:assuming\:}a\ge 0[/tex]

                  [tex]=3xy\:\sqrt{3}[/tex]

Therefore,

[tex]\sqrt{27x^2y^2}=3xy\:\sqrt{3}[/tex]

Hence, option C is correct.

Other Questions