Answer :
Answer:
The answer is below
Step-by-step explanation:
When computing quartile and decile, the data must be arranged in ascending order.
Given the data points:
13 13 13 20 26 26 29 31 34 34 35 35 36 37 38 41 41 41 42 43 46 47 48 49 53 55 56 62 67 82
The numbers are arranged in ascending order. The total number of terms is 30.
a)
[tex]First \ quartile(Q_1)=\frac{1}{4}(n+1)^{th}\ term\\\\where\ n=number\ of\ terms. Hence:\\\\Q_1=\frac{1}{4}(30+1)=7.75^{th}\ term=average\ of\ 7th\ and\ 8th\ term=\frac{29+31}{2} =30\\\\Q_1=30\\\\Third \ quartile(Q_3)=\frac{3}{4}(n+1)^{th}\ term\\\\Q_3=\frac{3}{4}(30+1)=23.25^{th}\ term=average\ of\ 23rd\ and\ 24th\ term=\frac{48+49}{2} =48.5\\\\Q_3=48.5[/tex]
b)
[tex]Second \ decile(D_2)=\frac{2}{10}(n+1)^{th}\ term\\\\where\ n=number\ of\ terms. Hence:\\\\D_2=\frac{2}{10}(30+1)=6.2^{th}\ term=average\ of\ 6th\ and\ 7th\ term=\frac{26+29}{2} =27.5\\\\D_2=27.5\\\\\\Eight \ decile(D_8)=\frac{8}{10}(n+1)^{th}\ term=\frac{8}{10}(30+1)=24.8^{th}\ term\\=average\ of\ 24th\ and\ 25th\ term=\frac{49+53}{2} =51\\\\D_8=51[/tex]