Answer :
Answer:
[tex]y + x = 3[/tex]
Step-by-step explanation:
The question is poorly formatted. However, I will take the parameters as follows:
Given
Perpendicular to: J(-3,2) and L(2,7)
Passes through: (3,0)
Required
Write an equation for the line
First, calculate the slope (m) of JL
[tex]m = \frac{y_2 - y_1}{x_2 - x_1}[/tex]
[tex]m = \frac{7-2}{2+3}[/tex]
[tex]m = \frac{5}{5}[/tex]
[tex]m = 1[/tex]
Since the line is perpendicula4 to JL, the slope is:
[tex]m_2 = -\frac{1}{m}[/tex]
[tex]m_2 = -\frac{1}{1}[/tex]
[tex]m_2 = -1[/tex]
The equation is then calculated using:
[tex]y - y_1 = m(x - x_1)[/tex]
[tex]y - 0 = -1(x - 3)[/tex]
[tex]y - 0 = -x + 3[/tex]
[tex]y = -x + 3[/tex]
[tex]y + x = 3[/tex]