If triangle ABC is similar to triangle PQR, find the value of x and y.

Answer:
x = 9
y = 6
Step-by-step explanation:
ΔABC ~ ΔPQR
Therefore, corresponding sides of these similar triangles will be in the proportional.
[tex]\frac{AB}{PQ}=\frac{BC}{QR}= \frac{AC}{PR}[/tex]
[tex]\frac{6}{x}= \frac{4}{y}= \frac{8}{12}[/tex]
[tex]\frac{6}{x}= \frac{8}{12}[/tex]
x = [tex]\frac{12\times 6}{8}[/tex]
x = 9
Similarly, [tex]\frac{4}{y}= \frac{8}{12}[/tex]
y = [tex]\frac{12\times 4}{8}[/tex]
y = 6