HELPPP
Verify that csc theta cos theta tan theta=1

Answer:
See Explanation
Step-by-step explanation:
[tex] \csc \theta \: \cos \theta \: \tan \theta = 1 \\ \\ LHS = \csc \theta \: \cos \theta \: \tan \theta \: \\ \\ = \frac{1}{ \sin \theta} \: \times \cancel{ \cos \theta }\: \times \frac{ \sin \theta}{ \cancel{ \cos \theta }} \\ \\ = \frac{1}{ \cancel{ \sin \theta}} \: \times \cancel{ \sin \theta} \\ \\ = 1 \\ \\ = RHS \\ \\ hence \: proved[/tex]
Answer:
a) Only the first one is an identity.
Step-by-step explanation:
1). 8 cos O tan O csc O = 8 simplifies to:
cos O tan O csc O = 1
cos O * (sin O / cos O) * (1 /sin O)
= cos O sin O / cos O sin O
= 1
So it is identity.
2) 13 sec^2 O/ cos^2 O - tan^2 O / cos^2O
= 13 sec^2 O - tan^2 O / cos^2 O
Now sec^2 O = 1 + tan^2 O, so we have:
(13( 1 + tan^2 O) - tan^2 O) / cos^2 O
= (12 tan^2 O + 13) / cos^2 O
This is not always = 2 so its not an identity.
Step-by-step explanation: