Answer :

Answer:

Option B.

Step-by-step explanation:

Remember that:

[tex]\frac{a}{b} /\frac{c}{d} = \frac{a}{b} *\frac{d}{c}[/tex]

Then we can rewrite our quotient:

[tex]\frac{x + 3}{x^2 - 2x - 3} /\frac{x^2 + 2x - 3}{x + 1}[/tex]

as:

[tex]\frac{x + 3}{x^2 - 2x - 3} *\frac{x + 1}{x^2 + 2x - 3}[/tex]

Now let's start to simplify this:

[tex]\frac{(x + 3)(x + 1)}{(x^2 - 2x - 3)*(x^2 + 2x - 3)}[/tex]

To simplify the math, let's factorize the denominator.

For:

x^2 - 2x - 3

The roots are given by the Bhaskara's equation:

[tex]x = \frac{-(-2) \pm \sqrt{(-2)^2 - 4*1*(-3)} }{2*1} = \frac{2 \pm 4}{2}[/tex]

Then in this case the roots are:

x = (2 + 4)/2 = 3

x = (2 - 4)/2 = -1

So we can write:

x^2 - 2x - 3 = (x - 3)*(x - (-1)) = (x - 3)*(x + 1)

For the other part of the denominator we have:

x^2 + 2x - 3

[tex]x = \frac{-2 \pm \sqrt{2^2 - 4*1*(-3)} }{2*1} = \frac{-2 \pm 4}{2}[/tex]

Now the roots are:

x = (-2 + 4)/2 = 1

x = (-2 - 4)/2 = -3

Then the polynomial can be written as:

x^2 + 2x - 3 = (x - (-3))*(x - 1) = (x + 3)*(x - 1)

If we replace all these in the expression:

[tex]\frac{(x + 3)(x + 1)}{(x^2 - 2x - 3)*(x^2 + 2x - 3)}[/tex]

We get:

[tex]\frac{(x + 3)(x + 1)}{(x - 1)*(x + 1)*(x - 3)*(x + 3)} = \frac{1}{(x - 3)*(x - 1)}[/tex]

Expanding the denominator, we get:

[tex]\frac{1}{(x - 3)*(x - 1)} = \frac{1}{x^2 - 4*x + 3}[/tex]

The correct option is B.

codkid313

Answer:

B

Step-by-step explanation:

for all u plato users, the school gotta upgrade they system

Other Questions