Answer :
Answer:
Step-by-step explanation:
a maximum or minimum occurs where the derivative equals zero
f(x) = -2x² + 14x - 10
f'(x) = -4x + 14
0 = -4x + 14
4x = 14
x = 3.5
f(3.5) = -2(3.5)² + 14(3.5) - 10 = 14.5
Answer:
Step-by-step explanation:
a maximum or minimum occurs where the derivative equals zero
f(x) = -2x² + 14x - 10
f'(x) = -4x + 14
0 = -4x + 14
4x = 14
x = 3.5
f(3.5) = -2(3.5)² + 14(3.5) - 10 = 14.5