Answer :
Answer:
- $6347.26
Step-by-step explanation:
Given:
- Initial amount P = 5483
- Interest rate r = 5% or 0.05
- Compound number n = 1
- Time t = 3 years
Find the total amount in 3 years:
- [tex]A = P(1+r/n)^{nt}[/tex]
- [tex]A = 5483*(1+0.05/1)^{1*3}=5483*(1.05)^3 = 6347.26[/tex]
[tex]\tt\red{\overbrace{\underbrace{\tt\color{orange}{ANSWER}}}}[/tex]
Here we've been given,
- Principal amount (p) = $5843
- Compound number (n) = 1
- Rate of Interest (r) = 5% = 5 × 1/100 = 0.05
- Time (t) = 3 years
- A = ?
The standard formula for Compound interest (C.P) is given by,
[tex]:\implies\tt{A = p( { \frac{1 + r}{n} )}^{n \times t} } \\ \\ \\ :\implies\tt{A = 5483( { \frac{1 + 0.05}{1}) }^{1 \times 3} } \\ \\ \\ :\implies\tt{A = 5483 \times {1.05}^{3} } \\ \\ \\ :\implies\tt{A = 6347.26}[/tex]