Answer :
Answer:
- [tex]\sf C.\; \sf \left(x-1\right)\left(x^2+x+1\right)[/tex]
Step-by-step explanation:
[tex]\sf x^3-1[/tex]
Let's rewrite 1 as 1 ^3.
[tex]\sf x^3-1^3[/tex]
Now, we can apply the "Difference of Cubes Formula".
[tex]\boxed{\sf x^3-y^3=\left(x-y\right)\left(x^2+xy+y^2\right)}[/tex]
- [tex]\sf x^3-1^3=\left(x-1\right)\left(x^2+x+1\right)[/tex]
- [tex]\sf \left(x-1\right)\left(x^2+x+1\right)[/tex]
_____________________