Answer :
Data:
Lenght (L) = 5 + Width (W)
Perimeter = 50 ft
A (area) = ?
Solving: (Let's find the Widht value)
Perimeter = 2*Lenght + 2*Width
50 = 2*(5 + W) + 2*W
50 = 10 + 2W + 2W
2W + 2W = 50 - 10
4W = 40
[tex]W = \frac{40}{4} [/tex]
[tex]\boxed{W = 10\:ft}[/tex]
Now, let's find the length value:
Lenght (L) = 5 + Width (W)
L = 5 + 10
[tex]\boxed{L = 15\:ft}[/tex]
Once you have found the length and width values, find the value of the rectangle area:
Formula [tex]A(area) = Lenght*Width[/tex]
Solving:
[tex]A(area) = Lenght*Width[/tex]
[tex]A(area) = 15*10[/tex]
[tex]\boxed{\boxed{A = 150\:ft^2}}\end{array}}\qquad\quad\checkmark[/tex]
Lenght (L) = 5 + Width (W)
Perimeter = 50 ft
A (area) = ?
Solving: (Let's find the Widht value)
Perimeter = 2*Lenght + 2*Width
50 = 2*(5 + W) + 2*W
50 = 10 + 2W + 2W
2W + 2W = 50 - 10
4W = 40
[tex]W = \frac{40}{4} [/tex]
[tex]\boxed{W = 10\:ft}[/tex]
Now, let's find the length value:
Lenght (L) = 5 + Width (W)
L = 5 + 10
[tex]\boxed{L = 15\:ft}[/tex]
Once you have found the length and width values, find the value of the rectangle area:
Formula [tex]A(area) = Lenght*Width[/tex]
Solving:
[tex]A(area) = Lenght*Width[/tex]
[tex]A(area) = 15*10[/tex]
[tex]\boxed{\boxed{A = 150\:ft^2}}\end{array}}\qquad\quad\checkmark[/tex]