Answer :

The equation of the required line is y = (2/3)x + 1

For given question,

We need to find an equation of the line passing through the point (-3, -1) and perpendicular to the line y = (-3/2)x - 4

Let m1 be the slope of required line and m2 be the slope of the line y = (-3/2)x - 4

so, m2 = -3/2

As required line is perpendicular to the line y = (-3/2)x - 4

⇒ m1 × m2 = -1

⇒ m1 × (-3/2) = -1

⇒ m1 = 2/3

So, the slope of the required line is 2/3.

Let (x1, y1) = (-3, -1)

Using slope-point form of the line, the required equation of the line would be,

⇒ (y - y1) = m(x - x1)

⇒ (y - (-1)) = 2/3 (x - (-3))

⇒ y + 1 = 2/3 (x + 3)

⇒ y + 1 = 2/3 x + 2

⇒ y = (2/3)x + 2 - 1

⇒ y = (2/3)x + 1

Therefore, the equation of the required line is y = (2/3)x + 1

Learn more about an equation of the line here:

https://brainly.com/question/21511618

#SPJ4

Other Questions