Answer :
[tex]{ \qquad\qquad\huge\underline{{\sf Answer}}} [/tex]
Here we go ~
[tex]\qquad \sf \dashrightarrow \: \dfrac{((243 {)}^{2n/5} ) \sdot( {3}^{2n + 1}) }{ ({9}^{n + 1}) \sdot( {3}^{2(n - 2)} )}[/tex]
[tex]\qquad \sf \dashrightarrow \: \dfrac{(3{)}^{5(2n/5)} ) \sdot( {3}^{2n + 1}) }{ ({3 }^{2(n + 1)}) \sdot( {3}^{2(n - 2)} )}[/tex]
[tex]\qquad \sf \dashrightarrow \: \dfrac{(3{)}^{2n} \sdot( {3}^{2n + 1}) }{ ({3 }^{(2n + 2)}) \sdot( {3}^{(2n - 4)} )}[/tex]
let's break it up :
- [tex] \sf 3 {}^{2n} = (3 {}^{2n -4} ) \sdot(3 {}^{4} )[/tex]
- [tex] \sf 3 {}^{(2n + 1)} = (3 {}^{2n -4} ) \sdot(3 {}^{5} )[/tex]
- [tex] \sf 3 {}^{(2n + 2)} = (3 {}^{2n -4} ) \sdot(3 {}^{6} )[/tex]
now let's take [tex]{ \sf {3}^{(2n-4)}} [/tex] common here ~
[tex]\qquad \sf \dashrightarrow \: \dfrac{(3{)}^{(2n - 4)} (3 {}^{4} \sdot{3}^{5}) }{ {(3 )}^{(2n - 4)}(3 {}^{6} \sdot1)}[/tex]
[tex]\qquad \sf \dashrightarrow \: \dfrac{{} (3 {}^{4} \sdot{3}^{5}) }{ (3 {}^{6} \sdot1)}[/tex]
[tex]\qquad \sf \dashrightarrow \: \dfrac{{} 3 {}^{9} }{ 3 {}^{6} }[/tex]
[tex]\qquad \sf \dashrightarrow \: 3 {}^{3} [/tex]
[tex]\qquad \sf \dashrightarrow \: 27[/tex]
Answer:
- 27
Step-by-step explanation:
[tex]\sf \cfrac{243^{\frac{2n}{5}}\cdot \:3^{2n+1}}{9^{n+1}\cdot \:3^{2\left(n-2\right)}}[/tex]
[tex]\sf 9^{n+1}\cdot \:3^{2\left(n-2\right)}[/tex]
Simplify:-
- [tex]\sf 3^{4n-2}[/tex]
[tex]\sf \cfrac{3^{2n}\cdot \:3^{2n+1}}{\boxed{\bf 3^{4n-2}}}[/tex]
Now, Factor:-
- [tex]\sf 243^{\frac{2n}{5}}[/tex]
- [tex]= \boxed{\bf 3^{2n}}[/tex]
[tex]\sf \cfrac{3^{2n}\cdot \:3^{2n+1}}{3^{4n-2}}[/tex]
Now, let's simplify:-
- [tex]\sf \cfrac{3^{2n}}{3^{4n-2}}[/tex]
- [tex]=\boxed{\bf 3^{-2n+2}}[/tex]
- [tex]\sf 3^{-2n+2}\cdot \:3^{2n+1}[/tex]
Simplify:-
- [tex]\sf 3^{-2n+2}\cdot \:3^{2n+1}[/tex]
Apply the exponent rule:-
- [tex]\sf 3^{-2n+2+2n+1}[/tex]
- [tex]\sf 3^3[/tex]
- [tex]\sf 27[/tex]
Therefore, your answer is 27.
______________________
Hope this helps!
Have a great day!