Answer :

a) We have a right triangle.

We have to find the value of x, which is the hypotenuse.

We can relate the angle B, the side AC and x with a trigonometric ratio as:

[tex]\begin{gathered} \sin (B)=\frac{\text{Opposite}}{\text{Hypotenuse}}=\frac{AC}{AB} \\ \sin (57\degree)=\frac{10.8}{x} \\ x=\frac{10.8}{\sin (57\degree)} \\ x\approx\frac{10.8}{0.83867} \\ x\approx12.9 \end{gathered}[/tex]

b) In this case, x is the adyacent side to angle A.

We can relate the sides and the angle as:

[tex]\begin{gathered} \cos (A)=\frac{\text{Adyacent}}{\text{Hypotenuse}}=\frac{AC}{AB} \\ \cos (47\degree)=\frac{x}{3} \\ x=3\cdot\cos (47\degree) \\ x\approx3\cdot0.682 \\ x\approx2.0 \end{gathered}[/tex]

Answer:

a) x = 12.9

b) x = 2.0

Other Questions