Answer :
Answer:
[tex](x-12)^2+(y+13)^2=36[/tex]Explanation:
Given:
• Center: (12,-13)
,• Point on circle: (18, -13)
First, we find the length of the radius.
[tex]\begin{gathered} r=\sqrt[]{(18-12)^2+(-13-(-13)_{})^2} \\ =\sqrt[]{(6)^2} \\ r=6\text{ units} \end{gathered}[/tex]The general equation of a circle is given as:
[tex](x-h)^2+(y-k)^2=r^2[/tex]Substituting the centre, (h,k)=(12,-13) and r=6, we have:
[tex]\begin{gathered} (x-12)^2+(y-(-13))^2=6^2 \\ (x-12)^2+(y+13)^2=36 \end{gathered}[/tex]The equation of the circle is:
[tex](x-12)^2+(y+13)^2=36[/tex]