Answer :

Answer:

[tex](x-12)^2+(y+13)^2=36[/tex]

Explanation:

Given:

• Center: (12,-13)

,

• Point on circle: (18, -13)​

First, we find the length of the radius.

[tex]\begin{gathered} r=\sqrt[]{(18-12)^2+(-13-(-13)_{})^2} \\ =\sqrt[]{(6)^2} \\ r=6\text{ units} \end{gathered}[/tex]

The general equation of a circle is given as:

[tex](x-h)^2+(y-k)^2=r^2[/tex]

Substituting the centre, (h,k)=(12,-13) and r=6, we have:

[tex]\begin{gathered} (x-12)^2+(y-(-13))^2=6^2 \\ (x-12)^2+(y+13)^2=36 \end{gathered}[/tex]

The equation of the circle is:

[tex](x-12)^2+(y+13)^2=36[/tex]

Other Questions