Answer :
The function y=4/5x + 3 represents a linear equation.
Let's find some points.
Where x=1, then:
[tex]y=\frac{4}{5}x+3[/tex][tex]y=\frac{4}{5}(1)+3[/tex][tex]y=\frac{19}{5}[/tex]We find the point (1,19/5).
Where 19/5 = 3.8
Now, lest find the x-intercept and y-intercept.
To find the x-intercept, set y=0
[tex]0=\frac{4}{5}x+3[/tex]Solve for x:
[tex]-3=\frac{4}{5}x[/tex][tex]5\cdot-3=4x[/tex][tex]-15=4x[/tex]where
[tex]x=-\frac{15}{4}=-3.75[/tex]So, the x-intercept is the point (-15/4, 0)
To find the y-intercept, set x=0. Then:
[tex]y=\frac{4}{5}x+3[/tex][tex]y=\frac{4}{5}(0)+3[/tex][tex]y=3[/tex]So, the y-intercept is the point (0,3)
Use this information to graph the line.
Hence, the graph for y=4/5x + 3 is given by:
