Answer :

Given:

y varies inversely as the fourth power of x

For the inversely forth power of x is:

[tex]y\propto\frac{1}{x^4}[/tex]

So the value of y is:

[tex]y=\frac{k}{x^4}[/tex]

where,

k = constent

so the value of k is x=2 and y = 7.

[tex]\begin{gathered} y=\frac{k}{x^4} \\ 7=\frac{k}{2^4} \\ k=7\times2^4 \\ k=7\times16 \\ k=112 \end{gathered}[/tex]

Then the function is:

[tex]y=\frac{112}{x^4}[/tex]

Other Questions