Determine the horizontal distance between the technician and the base of the telephone pole to the nearest tenth of a foot .

To solve this problem, we will use the trigonometric function tangent, recall that, by definition in a right triangle:
[tex]tan\theta=\frac{opposite\text{ side}}{adjacent\text{ side}}.[/tex]In the given triangle:
[tex]\begin{gathered} \theta=25^{\circ}, \\ opposite\text{ side=175 ft,} \\ adjacent\text{ side =d,} \end{gathered}[/tex]where d is the distance we are looking for. Therefore:
[tex]tan25^{\circ}=\frac{175ft}{d}.[/tex]Solving the above equation for d, we get:
[tex]d=\frac{175ft}{tan25^{\circ}}.[/tex]Finally, we get:
[tex]d=375.3ft.[/tex]Answer:
[tex]\begin{equation*} 375.3ft. \end{equation*}[/tex]