Answer :

Firstly, let us find the perimeter.

Perimeter P is;

[tex]P=AB+BC+AC[/tex]

The length of AB and AC can be calculated using the formula for distance between two points.

[tex]\begin{gathered} AB=\sqrt[]{4^2+2^2} \\ AB=\sqrt[]{16+4} \\ AB=\sqrt[]{20} \\ AB=4.47\operatorname{cm} \end{gathered}[/tex][tex]\begin{gathered} AC=\sqrt[]{4^2+4^2} \\ AC=\sqrt[]{16+16} \\ AC=\sqrt[]{32} \\ AC=5.66\operatorname{cm} \end{gathered}[/tex][tex]BC=6\operatorname{cm}[/tex]

substituting we have;

[tex]\begin{gathered} P=AB+BC+AC \\ P=4.47\operatorname{cm}+6\operatorname{cm}+5.66\operatorname{cm} \\ P=16.13\operatorname{cm} \end{gathered}[/tex]

The perimeter is 16.13 cm.

Secondly, The Area A.

[tex]A=\frac{1}{2}bh[/tex][tex]undefined[/tex]

Other Questions