Given g(x)=x^2-5x, find the equation of the secant line passing through (-3,g(-3)) and (4g(4)). Write your answer in form of y=mx+b

Given g(x)=x^2-5x, find the equation of the secant line passing through (-3,g(-3)) and (4g(4)). Write your answer in form of y=mx+b class=

Answer :

Given:

[tex]g(x)=x^2-5x\text{ ; (}-3,g(-3)),(4,g(4))[/tex][tex]g(-3)=(-3)^2-5(-3)[/tex][tex]g(-3)=9+15[/tex][tex]g(-3)=24[/tex][tex]g(4)=4^2-5(4)[/tex][tex]g(4)=16-20[/tex][tex]g(4)=-4[/tex]

Equation of line with the points (-3,24) and (4,-4)

[tex]\frac{y-y_1}{y_2-y_1}=\frac{x-x_1}{x_2-x_1}[/tex][tex]\frac{y-24_{}}{-4_{}-24_{}}=\frac{x+3_{}}{4_{}+3_{}}[/tex][tex]\frac{y-24_{}}{-28_{}}=\frac{x+3_{}}{7_{}}[/tex][tex]\frac{y-24_{}}{-4_{}}=\frac{x+3_{}}{1_{}}[/tex][tex]y-24_{}_{}=-4(x+3)_{}_{}[/tex][tex]y_{}=-4x-12+24[/tex][tex]y=-4x+12[/tex]

Other Questions