Answer :

Answer:

The area of the triangle is;

[tex]43.3\text{ square ft}[/tex]

Explanation:

Given an equilateral triangle with sides 10ft.

Recall that the area of a triangle can be calculated using the formula;

[tex]A=\frac{1}{2}bh[/tex]

The height of the triangle would be;

[tex]\begin{gathered} h=\sqrt[]{10^2-5^2} \\ h=\sqrt[]{75}^{} \\ h=5\sqrt[]{3} \end{gathered}[/tex]

and the base length is;

[tex]b=10[/tex]

substituting;

[tex]\begin{gathered} A=\frac{1}{2}bh=\frac{1}{2}\times10\times5\sqrt[]{3} \\ A=25\sqrt[]{3} \\ A=43.3\text{ square ft} \end{gathered}[/tex]

Therefore, the area of the triangle is;

[tex]43.3\text{ square ft}[/tex]

Other Questions