Answer :

Given:

We get points A(-6,-4), B(-2,-4), C(-6,-1), D(-2,3), E(-2,1) and F(-0.5,3) by observing the given grpah.

Consider the first option for point A(-6,-4).

[tex](x,y)\rightarrow(-y,x)[/tex]

Substitute x=-6 and y=-4, we get

[tex](-6,-4)\rightarrow(-(-4),-6)[/tex]

[tex](-6,-4)\rightarrow(4,-6)[/tex]

There is no point (4,-6) in the DEF triangle.

This is not true.

Consider the second option for point A(-6,-4).

[tex](x,y)\rightarrow(y,-x)[/tex]

Substitute x=-6 and y=-4, we get

[tex](-6,-4)\rightarrow(-4,6)[/tex]

There is no point (-4,6) in the DEF triangle.

This is not true.

Consider the fourth option for point A(-6,-4).

[tex](x,y)\rightarrow(\frac{1}{2}x,\frac{1}{2}y)[/tex]

Substitute x=-6 and y=-4, we get

[tex](-6,-4)\rightarrow(\frac{1}{2}(-6),\frac{1}{2}(-4))[/tex]

[tex](-6,-4)\rightarrow(-3,-2)[/tex]

There is no point (-3,-2) in the DEF triangle.

This is not true.

Consider the fifth option for point A(-6,-4).

[tex](x,y)\rightarrow(x+3,y+2)[/tex]

Substitute x=-6 and y=-4, we get

[tex](-6,-4)\rightarrow(-6+3,-4+2)[/tex]

[tex](-6,-4)\rightarrow(-3,-2)[/tex]

There is no point (-3,-2) in the DEF triangle.

This is not true.

Consider the sixth option for point A(-6,-4).

[tex](x,y)\rightarrow(2x,2y)[/tex]

Substitute x=-6 and y=-4, we get

[tex](-6,-4)\rightarrow(-12,-8)[/tex]

There is no point (-12,-8) in the DEF triangle.

This is not true.

Hence there is no similarity between triangle ABC and DEF.

Other Questions