O Given AXPS = ADNF, find the values of x and y.

Since both triangles XPS and DNF are congruent, we have the following equations:
[tex]\begin{gathered} 4y-3=57 \\ 17x+3=54 \end{gathered}[/tex]in the first equation, solving for y we get:
[tex]\begin{gathered} 4y-3=57 \\ \Rightarrow4y=57+3=60 \\ \Rightarrow y=\frac{60}{4}=15 \\ y=15 \end{gathered}[/tex]then, for the second equation, we have:
[tex]\begin{gathered} 17x+3=54 \\ \Rightarrow17x=54-3=51 \\ \Rightarrow x=\frac{51}{17}=3 \\ x=3 \end{gathered}[/tex]therefore, y = 15 and x = 3