Answer :

Part B

In the given right triangle

we have that

Applying the Pythagorean Theorem

[tex]\begin{gathered} L^2=x^2+6^2 \\ L=\sqrt{x^2+36} \end{gathered}[/tex][tex]\begin{gathered} cos\theta=\frac{6}{L} \\ cos\theta=\frac{6}{\sqrt{x^2+36}} \\ \\ \theta=cos^{-1}(\frac{6}{\sqrt{x^2+36}}) \\ \end{gathered}[/tex]

Find out the derivative

[tex]\frac{d\theta}{dt}=\frac{6}{x^2+36}*\frac{dx}{dt}[/tex]

Remember that

dx/dt=5/2 ft/sec (part a)

L^2=x^2+36=10^2

substitute given values

[tex]\frac{d\theta}{dt}=\frac{6}{10^2}*\frac{5}{2}=\frac{15}{100}=0.15[/tex]

the answer is 0.15 rad/sec

Other Questions