Answer :
Given:
[tex]1\frac{1}{2}lawns\text{ in 2}\frac{1}{2}hours[/tex]Let's find how many complete lawns Joe can mow in 6 hours.
We have:
[tex]\begin{gathered} 1\frac{1}{2}lawns=2\frac{1}{2}\text{ hours} \\ \\ x\text{ lawns = 6 hours} \end{gathered}[/tex]Rewrite the fractions as decimals:
[tex]\begin{gathered} 1.5\text{ lawns = }2.5\text{ hours} \\ \\ x\text{ lawns = 6 hours} \end{gathered}[/tex]Let's solve for x.
Now, we have the proportionality equation:
[tex]\frac{1.5}{2.5}=\frac{x}{6}[/tex]Cross multiply:
[tex]\begin{gathered} 2.5x=6(1.5) \\ \\ 2.5x=9 \end{gathered}[/tex]Divide both sides by 2.5:
[tex]\begin{gathered} \frac{2.5x}{2.5}=\frac{9}{2.5} \\ \\ x=3.6=3\frac{6}{10}=3\frac{3}{5}lawns \end{gathered}[/tex]Therefore, Joe can complete 3 3/5 lawns in 6 hours.
ANSWER:
[tex]3\frac{3}{5}[/tex]